Package: APPEstimation 0.1.1

APPEstimation: Adjusted Prediction Model Performance Estimation

Calculating predictive model performance measures adjusted for predictor distributions using density ratio method (Sugiyama et al., (2012, ISBN:9781139035613)). L1 and L2 error for continuous outcome and C-statistics for binomial outcome are computed.

Authors:Eisuke Inoue, Hajime Uno

APPEstimation_0.1.1.tar.gz
APPEstimation_0.1.1.zip(r-4.5)APPEstimation_0.1.1.zip(r-4.4)APPEstimation_0.1.1.zip(r-4.3)
APPEstimation_0.1.1.tgz(r-4.5-any)APPEstimation_0.1.1.tgz(r-4.4-any)APPEstimation_0.1.1.tgz(r-4.3-any)
APPEstimation_0.1.1.tar.gz(r-4.5-noble)APPEstimation_0.1.1.tar.gz(r-4.4-noble)
APPEstimation_0.1.1.tgz(r-4.4-emscripten)APPEstimation_0.1.1.tgz(r-4.3-emscripten)
APPEstimation.pdf |APPEstimation.html
APPEstimation/json (API)

# Install 'APPEstimation' in R:
install.packages('APPEstimation', repos = c('https://eisuke-inoue.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 3 scripts 216 downloads 4 exports 1 dependencies

Last updated 7 years agofrom:9fedeba12a. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 23 2025
R-4.5-winOKMar 23 2025
R-4.5-macOKMar 23 2025
R-4.5-linuxOKMar 23 2025
R-4.4-winOKMar 23 2025
R-4.4-macOKMar 23 2025
R-4.4-linuxOKMar 23 2025
R-4.3-winOKMar 23 2025
R-4.3-macOKMar 23 2025

Exports:appe.glmappe.lmcvalest.bindensratio.appe

Dependencies:densratio