
Package: APPEstimation (via r-universe)
August 21, 2024

Type Package

Title Adjusted Prediction Model Performance Estimation

Version 0.1.1

Depends densratio

Date 2018-1-4

Author Eisuke Inoue, Hajime Uno

Maintainer Eisuke Inoue <eisuke.inoue@marianna-u.ac.jp>

Description Calculating predictive model performance measures adjusted
for predictor distributions using density ratio method
(Sugiyama et al., (2012, ISBN:9781139035613)). L1 and L2 error
for continuous outcome and C-statistics for binomial outcome
are computed.

License GPL-2

NeedsCompilation no

Date/Publication 2018-01-05 12:30:40 UTC

Repository https://eisuke-inoue.r-universe.dev

RemoteUrl https://github.com/cran/APPEstimation

RemoteRef HEAD

RemoteSha 9fedeba12a5148d33ee04dc93f7b1f0da98aad46

Contents
APPEstimation-package . 2
appe.glm . 3
appe.lm . 5
cvalest.bin . 6
densratio.appe . 7

Index 8

1

2 APPEstimation-package

APPEstimation-package R function to calculate model performance measure adjusted for pre-
dictor distributions.

Description

This package provides the function to estimate model performance measures (L1, L2, C-statistics).
The difference in the distribution of predictors between two datasets (training and validation) is
adjusted by a density ratio estimate.

Details

Package: APPEstimation
Type: Package
Title: Adjusted Prediction Model Performance Estimation
Version: 0.1.1
Depends: densratio
Date: 2018-1-4
Author: Eisuke Inoue, Hajime Uno
Maintainer: Eisuke Inoue <eisuke.inoue@marianna-u.ac.jp>
Description: Calculating predictive model performance measures adjusted for predictor distributions using density ratio method (Sugiyama et al., (2012, ISBN:9781139035613)). L1 and L2 error for continuous outcome and C-statistics for binomial outcome are computed.
License: GPL-2

Index of help topics:

APPEstimation-package R function to calculate model performance
measure adjusted for predictor distributions.

appe.glm C-statistics adjusted for predictor
distributions

appe.lm L_1 and L_2 errors adjusted for predictor
distributions

cvalest.bin Estimation of C-statistics
densratio.appe A wrapper function

Author(s)

Eisuke Inoue, Hajime Uno

Maintainer: Eisuke Inoue <eisuke.inoue@marianna-u.ac.jp>

References

Sugiyama, M., Suzuki, T. & Kanamori, T. Density Ratio Estimation in Machine Learning. Cam-
bridge University Press 2012. ISBN:9781139035613.

appe.glm 3

Examples

set.seed(100)

generating learning data
n0 = 100
Z = cbind(rbeta(n0, 5, 5), rbeta(n0, 5, 5))
Y = apply(Z, 1, function (xx) {

rbinom(1, 1, (1/(1+exp(-(sum(c(-2,2,2) * c(1,xx)))))))})
dat = data.frame(Y=Y, Za=Z[,1], Zb=Z[,2])

the model to be evaluated
mdl = glm(Y~., binomial, data=dat)

validation dataset, with different centers on predictors
n1 = 100
Z1 = cbind(rbeta(n1, 6, 4), rbeta(n1, 6, 4))
Y1 = apply(Z1, 1, function (xx) {

rbinom(1, 1, (1/(1+exp(-(sum(c(-2,2,2) * c(1,xx)))))))})
dat1 = data.frame(Y=Y1, Za=Z1[,1], Zb=Z1[,2])

calculation of L1 and L2 for this model
appe.glm(mdl, dat, dat1, reps=0)

appe.glm C-statistics adjusted for predictor distributions

Description

Calculates adjusted C statistics by predictor distributions for a generalized linear model with binary
outcome.

Usage

appe.glm(mdl, dat.train, dat.test, method = "uLSIF", sigma = NULL,
lambda = NULL, kernel_num = NULL, fold = 5, stabilize = TRUE,
qstb = 0.025, reps = 2000, conf.level = 0.95)

Arguments

mdl a glm object describing a prediction model to be evaluated.

dat.train a dataframe used to construct a prediction model (specified in mdl), correspond-
ing to a training data. Need to include outcome and all predictors.

dat.test a dataframe corresponding to a validation (testing) data. Need to include out-
come and all predictors.

method uLSIF or KLIEP. Same as the argument in densratio function from densratio
package.

4 appe.glm

sigma a positive numeric vector corresponding to candidate values of a bandwidth for
Gaussian kernel. Same as the argument in densratio function from densratio
package.

lambda a positive numeric vector corresponding to candidate values of a regularization
parameter. Same as the argument in densratio function from densratio pack-
age.

kernel_num a positive integer corresponding to number of kernels. Same as the argument in
densratio function from densratio package.

fold a positive integer corresponding to a number of the folds of cross-validation in
the KLIEP method. Same as the argument in densratio function from densratio
package.

stabilize a logical value as to whether tail weight stabilization is performed or not. If
TRUE, both tails of the estimated density ratio distribution are replaced by the
constant value which is specified at qstb option.

qstb a positive numerical value less than 1 to control the degree of weight stabiliza-
tion. Default value is 0.025, indicating estimated density ratio values less than
the 2.5 percentile and more than the 97.5 percentile are set to 2.5 percentile and
97.5 percentile, respectively.

reps a positive integer to specify bootstrap repetitions. If 0, bootstrap calculations are
not performed.

conf.level a numerical value indicating a confidence level of interval.

Value

Adjusted and non-adjusted estimates of C-statistics are provided as matrix form. "Cstat" indicates
non-adjusted version, "C adjusted by score" indicates adjusted version by linear predictors distri-
bution, and "C adjusted by predictors" indicates adjusted version by predictor distributions (multi-
dimensionally). For confidence intervals, "Percentile" indicates a confidence interval by percentile
method and "Approx" indicates approximated versions by Normal distribution.

Examples

set.seed(100)

generating learning data
n0 = 100
Z = cbind(rbeta(n0, 5, 5), rbeta(n0, 5, 5))
Y = apply(Z, 1, function (xx) {

rbinom(1, 1, (1/(1+exp(-(sum(c(-2,2,2) * c(1,xx)))))))})
dat = data.frame(Y=Y, Za=Z[,1], Zb=Z[,2])

the model to be evaluated
mdl = glm(Y~., binomial, data=dat)

validation dataset, with different centers on predictors
n1 = 100
Z1 = cbind(rbeta(n1, 6, 4), rbeta(n1, 6, 4))
Y1 = apply(Z1, 1, function (xx) {

appe.lm 5

rbinom(1, 1, (1/(1+exp(-(sum(c(-2,2,2) * c(1,xx)))))))})
dat1 = data.frame(Y=Y1, Za=Z1[,1], Zb=Z1[,2])

calculation of L1 and L2 for this model
appe.glm(mdl, dat, dat1, reps=0)

appe.lm L_1 and L_2 errors adjusted for predictor distributions

Description

Calculates adjusted L1 and L2 errors by predictor distributions for a linear model.

Usage

appe.lm(mdl, dat.train, dat.test, method = "uLSIF", sigma = NULL,
lambda = NULL, kernel_num = NULL, fold = 5, stabilize = TRUE,
qstb = 0.025, reps = 2000, conf.level = 0.95)

Arguments

mdl a lm object describing a prediction model to be evaluated.

dat.train same as in appe.glm.

dat.test same as in appe.glm.

method same as in appe.glm.

sigma same as in appe.glm.

lambda same as in appe.glm.

kernel_num same as in appe.glm.

fold same as in appe.glm.

stabilize same as in appe.glm.

qstb same as in appe.glm.

reps same as in appe.glm.

conf.level same as in appe.glm.

Value

Adjusted and non-adjusted estimates of L1 and L2 errors are provided as matrix form. "L1" and
"L2" indicate non-adjusted versions, "L1 adjusted by score" and "L2 adjusted by score" indicate
adjusted versions by linear predictors distribution, "L1 adjusted by predictors" and "L2 adjusted
by predictors" indicate adjusted versions by predictor distributions (multi-dimensionally). For con-
fidence intervals, "Percentile" indicates a confidence interval by percentile method and "Approx"
indicates approximated versions by Normal distribution.

6 cvalest.bin

Examples

set.seed(100)

generating development data
n0 = 100
Z = cbind(rbeta(n0, 3, 3), rbeta(n0, 3, 3))
Y = apply(Z, 1, function(xx) { rlnorm(1, sum(c(1, 1) * xx), 0.3) })
dat = data.frame(Za=Z[,1], Zb=Z[,2], Y=Y)

the model to be evaluated
mdl = lm(Y~ Za + Zb, data=dat)

generating validation dataset
n1 = 100
Z1 = cbind(rbeta(n0, 3.5, 2.5), rbeta(n0, 3.5, 2.5))
Y1 = apply(Z1, 1, function(xx) { rlnorm(1, sum(c(1, 1) * xx), 0.3) })
dat1 = data.frame(Za=Z1[,1], Zb=Z1[,2], Y=Y1)

calculation of L1 and L2 for this model
appe.lm(mdl, dat, dat1, reps=0)

cvalest.bin Estimation of C-statistics

Description

Calculates C-statistics. Individual case weight can be incorporated.

Usage

cvalest.bin(Y, scr, wgt = NULL)

Arguments

Y a numerical vector of inary outcome, either 0 or 1.

scr a numerical vector of continuous variable.

wgt a numerical vector corresponding to individuatl weight.

Value

C-statistics is provided.

densratio.appe 7

densratio.appe A wrapper function

Description

A wrapper function to use "densratio" function from the densratio package.

Usage

densratio.appe(xtrain, xtest, method = "uLSIF", sigma = NULL,
lambda = NULL, kernel_num = NULL, fold = 5,
stabilize = TRUE, qstb = 0.025)

Arguments

xtrain a dataframe used to construct a prediction model.

xtest a dataframe corresponding to a validation (testing) data.

method same as in appe.glm.

sigma same as in appe.glm.

lambda same as in appe.glm.

kernel_num same as in appe.glm.

fold same as in appe.glm.

stabilize same as in appe.glm.

qstb same as in appe.glm.

Index

appe.glm, 3
appe.lm, 5
APPEstimation (APPEstimation-package), 2
APPEstimation-package, 2

cvalest.bin, 6

densratio.appe, 7

8

	APPEstimation-package
	appe.glm
	appe.lm
	cvalest.bin
	densratio.appe
	Index

